s-SMOOTH: Sparsity and Smoothness Enhanced EEG Brain Tomography

نویسندگان

  • Ying Li
  • Jing Qin
  • Yue-Loong Hsin
  • Stanley Osher
  • Wentai Liu
چکیده

EEG source imaging enables us to reconstruct current density in the brain from the electrical measurements with excellent temporal resolution (~ ms). The corresponding EEG inverse problem is an ill-posed one that has infinitely many solutions. This is due to the fact that the number of EEG sensors is usually much smaller than that of the potential dipole locations, as well as noise contamination in the recorded signals. To obtain a unique solution, regularizations can be incorporated to impose additional constraints on the solution. An appropriate choice of regularization is critically important for the reconstruction accuracy of a brain image. In this paper, we propose a novel Sparsity and SMOOthness enhanced brain TomograpHy (s-SMOOTH) method to improve the reconstruction accuracy by integrating two recently proposed regularization techniques: Total Generalized Variation (TGV) regularization and ℓ1-2 regularization. TGV is able to preserve the source edge and recover the spatial distribution of the source intensity with high accuracy. Compared to the relevant total variation (TV) regularization, TGV enhances the smoothness of the image and reduces staircasing artifacts. The traditional TGV defined on a 2D image has been widely used in the image processing field. In order to handle 3D EEG source images, we propose a voxel-based Total Generalized Variation (vTGV) regularization that extends the definition of second-order TGV from 2D planar images to 3D irregular surfaces such as cortex surface. In addition, the ℓ1-2 regularization is utilized to promote sparsity on the current density itself. We demonstrate that ℓ1-2 regularization is able to enhance sparsity and accelerate computations than ℓ1 regularization. The proposed model is solved by an efficient and robust algorithm based on the difference of convex functions algorithm (DCA) and the alternating direction method of multipliers (ADMM). Numerical experiments using synthetic data demonstrate the advantages of the proposed method over other state-of-the-art methods in terms of total reconstruction accuracy, localization accuracy and focalization degree. The application to the source localization of event-related potential data further demonstrates the performance of the proposed method in real-world scenarios.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Does Muscle Fatigue Alter EEG Bands of Brain Hemispheres?

Background: Muscle fatigue has been known to influence brain activity, but very little is known about how cortical centers respond to muscle fatigue.Objective: This study was conducted to investigate the effects of muscle contraction and fatigue induced by two different percents of maximal voluntary contraction (MVC) on Electroencephalography (EEG) signals.Material and Methods: In t...

متن کامل

Computationally-efficient algorithms for sparse, dynamic solutions to the EEG source localization problem.

OBJECTIVE Electroencephalography (EEG) and magnetoencephalography (MEG) non-invasively record scalp electromagnetic fields generated by cerebral currents, revealing millisecond-level brain dynamics useful for neuroscience and clinical applications. Estimating the currents that generate these fields, i.e., source localization, is an ill-conditioned inverse problem. Solutions to this problem have...

متن کامل

Lower bounds on minimax rates for nonparametric regression with additive sparsity and smoothness

We study minimax rates for estimating high-dimensional nonparametric regression models with sparse additive structure and smoothness constraints. More precisely, our goal is to estimate a function f∗ : R → R that has an additive decomposition of the form f(X1, . . . ,Xp) = ∑ j∈S h ∗ j (Xj), where each component function h ∗ j lies in some class H of “smooth” functions, and S ⊂ {1, . . . , p} is...

متن کامل

Evaluation of the Hidden Markov Model for Detection of P300 in EEG Signals

Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool  between humans and machines. Most brain-computer interface (BCI) systems use the P300 component,  which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for  detection of P300.  Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...

متن کامل

Neuroimaging in Iran: A Review

ABSTRACTNeuroimaging allows noninvasive evaluation of the anatomy, physiology, and function of the brain. It is widely used for diagnosis, treatment planning, and treatment evaluation of neurological disorders as well as understanding functions of the brain in health and disease. Neuroimaging modalities include X-ray computed tomography (CT), magnetic resonance imaging (MRI), single photon emis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016